






PSSOU MA/MSC (Mathematics) Previous Real Analysis (L–292) Solved Assignment 2025
(Assignment—1)
Section—A
1. If p is prime, then :
(a) p is rational.
(b) p is irrational.
(c) p is complex.
(d) None of the above
| |
2. Function
(a)
f
x
f x x x
( ) , 0
(0) 1
(b)
f
(0)
1
may be continuous at origin, if :
(c) (0) 0 f
(d) cannot be continuous for any value of (0) f
3. If 1
2 1
1 I ax
x
, then I is :
(a) convergent
(b) divergent
(c) equal to 2
(d) None of the above
4. 1 lim 1
n
n n
is equal to :
(a) 1
e
(b) e
(c) 1
(d) 0
5. Sequence 1 n n is :
(a) convergent
(b) divergent
(c) oscillatory
(d) None of the above
6. The distance between points of X and Y is :
(a) X Y
(b) X Y
(c) 2 2 X Y
(d) None of the above
7. If 1 (A B) exists, then :
(a) 1A and 1B both exist.
(b) 1A and 1B do not exist.
(c) at least one of 1A and 1B exist.
(d) nothing can be said.
8. The value of 1 1
0 0
xydxdy is :
(a) 1
4
(b) 1
2
(c) 1
(d) None of the above
Section—B
9. Define supremum of a set.
10. Find the value of
0
( ) lim ( ) x
f x
g x
, where 2 1 ( ) sin f x x x x and ( ) sin gx x .
11. Show that if f is monotonic on [ , ] ab , then f is integrable on [ , ] ab .
12. Show that the limit of a convergent sequence is unique.
13. Find the value of x and y, if 2 6 A 3 9
, 3 B 2
x
y
and AB = 0.
14. Find the value of 3 2
0 1
( 1 ) xy x y dxdy .